
Multidimensional Data Modeling for Complex Data

Torben Bach Pedersen
Center for Health Information Services
Kommunedata, P. O. Pedersens Vej 2

DK-8200Århus N, Denmark
email:tbp@kmd.dk

Christian S. Jensen
Department of Computer Science

Aalborg University, Fredrik Bajers Vej 7E,
DK–9220 Aalborg Øst, Denmark

email:csj@cs.auc.dk

Abstract

On-Line Analytical Processing (OLAP) systems considerably
ease the process of analyzing business data and have become
widely used in industry. Such systems primarily employ mul-
tidimensional data models to structure their data. However,
current multidimensional data models fall short in their abil-
ities to model the complex data found in some real-world ap-
plication domains. The paper presents nine requirements to
multidimensional data models, each of which is exemplified
by a real-world, clinical case study. A survey of the exist-
ing models reveals that the requirements not currently met in-
clude support for many-to-many relationships between facts
and dimensions, built-in support for handling change and
time, and support for uncertainty as well as different levels of
granularity in the data. The paper defines an extended mul-
tidimensional data model, and an associated algebra, which
address all nine requirements.

1 Introduction
On-Line Analytical Processing (OLAP) [4] has attracted

much interest in recent years, as business managers attempt
to extract useful information from large databases in order
to make informed management decisions. Reports indicate
that traditional data models, such as the ER model and the
relational model, do not provide good support for OLAP ap-
plications. As a result, new data models based on amulti-
dimensionalview of data have emerged. These multidimen-
sional data models typically categorize data as beingmea-
surable business facts(measures) ordimensions, which are
mostly textual and characterize the facts. For example, in a
retail business,productsare sold tocustomersat certaintimes
in certainamountsat certainprices. A typical fact would be
a purchase, with the amount and price as the measures, and
the customer purchasing the product, the product being pur-
chased, and the time of purchase as the dimensions. In OLAP
research, most work has concentrated on performance issues;
and higher-level issues such as conceptual modeling have re-

ceived less attention. Several researchers have pointed to this
lack in OLAP research, and it has been suggested to try to
combine the traditional OLAP virtues of performance with
the more advanced data model concepts from the field ofsci-
entific and statistical databases[8].

A data model for OLAP applications should have certain
characteristics in order to support the complex data found in
many real-world systems. We present nine advanced require-
ments that a multidimensional data model should satisfy and
illustrate the requirements using a real-world case study from
the clinical world. We present an extended multidimensional
data model that addresses all nine requirements. The data
model supports explicit hierarchies, multiple hierarchies, and
non-strict hierarchies in dimensions. Dimensions and mea-
sures are treated symmetrically, and there is support for cor-
rect aggregation of data. The many-many relationships be-
tween facts and dimensions are captured directly, and data
with different levels of granularity may be recorded. Finally,
the model supports handling change over time and some as-
pects of uncertainty in the data. The model is equipped with
an algebra that is closed and at least as strong as relational
algebra with aggregation.

Eight previously proposed data models, which are rep-
resentative for the spectrum of multidimensional data mod-
els, are evaluated against the nine requirements, and it is
shown that no other model satisfies these requirements. Im-
portantly, no other model supports many-to-many relation-
ships between facts and dimensions, handling of uncertainty,
and different levels of granularity at all, and no other model
completely supports handling change and time or non-strict
hierarchies.

The presentation is structured as follows. Section 2
presents a real-world case study, describes the nine require-
ments to multidimensional data models, and evaluates previ-
ously proposed models against the requirements. Sections 3
and 4 define the extended multidimensional data model and
the associated algebra. Section 5 evaluates the model, sum-
marizes, and points to future directions.

©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

2 Motivation
This section presents a healthcare case study; the require-

ments that a data model should satisfy, examplified by the
case study; and finally evaluates existing multidimensional
data models according to the requirements.

Diagnosis
Diagnosis

Family
Is part of

* Valid From
* Valid To
* Type

* Code
* Text
* Valid From
* Valid To

Patient

* Name
* SSN
* Date of Birth
* (Age)

(0,n)

Grouping
Diagnosis

Group

* Valid From
* Valid To
* Type

(1,n)

Has

Low-level
Diagnosis

* Valid From
* Valid To
* Type

Area

Lives
in

* Valid From
* Valid To

(1,1)

(0,n)

County Region
County

grouping
Area

grouping

* Name * Name * Name

(1,1)(1,n) (1,n)

Diagnosis

D

(0,n)

(1,1)

(1,n)(1,n)(1,n)

Figure 1. Patient Diagnosis Case Study

2.1 A Case Study

The case study concerns the patients in a hospital, their
associated diagnoses, and their places of residence. The goal
is to investigate whether some diagnoses occur more often
in some areas than in others, in which case environmental or
lifestyle factors might be contributing to the disease pattern.
An ER diagram illustrating the case is seen in Figure 1.

The most important entities are thepatients, for which we
record Name, Social Security Number (SSN), Date of Birth,
and Age (derived). Each patient can have one or moredi-
agnoses. We record the time interval where a diagnosis is
considered to be valid for a patient. We also record thetype
of diagnosis, to show whether a diagnosis is considered to
beprimary or secondary. A patient may have only one pri-
mary diagnosis at any one point in time. When registering
a diagnosis of a patient, physicians often use different lev-
els of granularity. Some will use the very precise diagnosis
“Insulin dependent diabetes,” while others will use the more
imprecise diagnosis “Diabetes,” which covers a wider range
of patient conditions, corresponding to a number of more pre-
cise diagnoses. To model this, the relationship from patient
to diagnoses is to the supertype “Diagnosis.” The Diagno-
sis type has three subtypes, corresponding to different levels
of granularity, thelow-level diagnosis, thediagnosis family,
and thediagnosis group. The higher-level diagnoses are both
(imprecise) diagnoses in their own right, but also function as

groups of lower-level diagnoses. A diagnosis family consists
of 5–20 related low-level diagnoses. A diagnosis group con-
sists of 5–20 diagnosis families. In the standard classification
hierarchy, a lower-level item is part of exactly one item on the
next level, making it astrict, partitioninghierarchy. However,
to allow for more flexible grouping, auser-definedhierarchy
is introduced, where a lower-level item can be a member of
zero or more higher-level items, making it anon-strict, non-
partitioninghierarchy.

ID Name SSN Date of Birth
1 John Doe 12345678 25/05/69
2 Jane Doe 87654321 20/03/50

Patient Table

PatientID DiagnosisID ValidFrom ValidTo Type
1 9 01/01/89 NOW Primary
2 3 23/03/75 24/12/75 Secondary
2 8 01/01/70 31/12/81 Primary
2 5 01/01/82 30/09/82 Secondary
2 9 01/01/82 NOW Primary

Has Table

ID Code Text ValidFrom ValidTo
3 P11 Diabetes, pregnancy 01/01/70 31/12/79
4 O24 Diabetes, pregnancy 01/01/80 NOW
5 O24.0 Ins. dep. diab., pregn. 01/01/80 NOW
6 O24.1 Non ins. dep. diab., pregn. 01/01/80 NOW
7 P1 Other pregnancy diseases 01/01/70 31/12/79
8 D1 Diabetes 01/10/70 31/12/79
9 E10 Insulin dep. diabetes 01/01/80 NOW
10 E11 Non insulin dep. diabetes 01/01/80 NOW
11 E1 Diabetes 01/01/80 NOW
12 O2 Other pregnancy diseases 01/10/80 NOW

Diagnosis Table

ParentID ChildID ValidFrom ValidTo Type
4 5 01/01/80 NOW WHO
4 6 01/01/80 NOW WHO
7 3 01/01/70 31/12/79 WHO
8 3 01/01/70 31/12/79 User-defined
9 5 01/01/80 NOW User-defined
10 6 01/01/80 NOW User-defined
11 9 01/01/80 NOW WHO
11 10 01/01/80 NOW WHO
12 4 01/01/80 NOW WHO

Grouping Table

Table 1. Data for the Case Study

For example, a low-level diagnosis can be part of several
diagnosis families, e.g., the “Insulin dependent diabetes dur-
ing pregnancy” diagnosis is part of both the “Diabetes dur-
ing pregnancy” and the “Insulin dependent diabetes” family.
Properties of the hierarchies will be discussed in more detail
in Section 3.4. For diagnoses, we record an alphanumeric
code and a descriptive text. The code and text are usually
determined by a standard classification of diseases, e.g., the
World Health Organization’s International Classification of
Diseases (ICD-10) [12], but we also allow user-defined diag-
noses. As the diagnosis classification changes over time, we
also record the time intervals where the diagnoses are “valid,”

i.e., can be used when diagnosing patients.
We also record the place of residence for the patients along

with the period of residence to capture movement over time.
We record the place of residence at the granularity of anarea,
which is part of exactly onecounty, which in turn is part of
exactly oneregion, yielding astrict, partitioninghierarchy.

In order to list some example data, we assume a stan-
dard mapping of the ER diagram to relational tables, and we
use surrogate keys, namedID, with globally unique values.
Dates are written in the format dd/mm/yy. For the “Valid
To” attribute, we use the special, continously-growing value
“NOW” that denotes the current time [20]. As the three sub-
types of the Diagnosis type do not have any attributes of their
own, all three are mapped to a common Diagnosis table. The
“is part of” and “grouping” relationships are also mapped to a
common “Grouping” table. The data consists of two patients,
four diagnoses made for the patients, and 10 diagnoses in a
hierarchy. On January 1, 1980, a new, more detailed classi-
fication with a new coding scheme is introduced. The result-
ing tables are shown in Table 1 and will be used in examples
throughout the paper.

2.2 Requirements for Data Analysis

This section describes the features that a data model
should possess in order to fully support our sample case and
other advanced uses. Current multidimensional models are
evaluated against these features in the next section. The re-
quirements are the following: 1) there should beexplicit hi-
erarchies in dimensionsto aid the user in navigation, e.g., the
hierarchyarea < county < region should be captured; 2)
thetreatment of dimensions and measures should be symmet-
ric, e.g., the Age attribute could be used for average computa-
tions as well as defining age groups; 3) the model should sup-
portmultiple hierarchies in a dimensionto allow for different
aggregation paths; e.g., with a time dimension on the Date
of Birth attribute, days could roll up into weeksor months;
4) the model should supportcorrect aggregationof data,
closely related tosummarizability[6, 7], so data is not dou-
bly counted, and non-additive data is not added; e.g., when
counting patients in different diagnosis groups, we should
only count the same patient once per group, even though that
patient may have several diagnoses; 5)non-strict hierarchies
as found in many real-world situations, e.g., the user-defined
diagnosis hierarchy, should be supported; 6) the oft-occuring
many-to-many relationships between facts and dimensions,
e.g., between patients and diagnoses, should be handled by
the model; 7) thechange in data over time, e.g., the changes
in the diagnosis hierarchy, should be supported directly by
the model; 8) theuncertaintyoften associated with data, e.g.,
a physician may be only 90% certain when diagnosing a pa-
tient, should also be handled directly by the model; 9) the
model should allow data withdifferent levels of granular-
ity, e.g., the more or less precise diagnoses of patients, to be

recorded.

2.3 Related Work

Next, we evaluate data models that have previously been
proposed for data warehousing according to the requirements
in the previous section. We consider the models of Rafanelli
& Shoshani [6], Agrawal et al. [5], Gray et al. [2], Kim-
ball [3], Li & Wang [10], Gyssens & Lakshmanan [9], Datta
& Thomas [13], and Lehner [11]. The results of evaluating
the eight data models against our nine requirements are seen
in Table 2, where “

p
” denotesfull, “p” denotespartial, and

“-” denotesno support for a requirement. It can be seen that
the models generally provide full or partial support for most
of requirements 1–4. Requirement 5 (non-strict hierarchies)
is partially supported by three of the models, while require-
ment 7 (handling change and time) is only partially supported
by Kimball [3]. Requirements 6, 8, and 9 are not supported
by any of the models. Further discussion of these issues may
be found in the full paper [21]. The model proposed in this
paper aims to support all nine requirements.

1 2 3 4 5 6 7 8 9
Rafanelli [6]

p
- -

p
p - - - -

Agrawal [5] p
p p

- p - - - -
Gray [2] -

p p
p - - - - -

Kimball [3] - -
p

p - - p - -
Li [10] p -

p
p - - - - -

Gyssens [9] -
p p

p - - - - -
Datta [13] -

p p
- p - - - -

Lehner [11]
p

- -
p

- - - - -

Table 2. Evaluation of the Data Models

3 The Data Model
In this section we define our model. For every part of the

model, we define theintension, the extension, and give an
illustrating example. To avoid unnecessary complexity, we
first define the basic model and then in turn define extensions
for handling time and uncertainty.

3.1 The Basic Model
An n-dimensional fact schemais a two-tupleS = (F ;D),

whereF is a fact typeandD = fTi; i = 1; ::; ng is its corre-
spondingdimension types.

Example 1 In the case study from Section 2.1 we will have
Patientas the fact type, andDiagnosis, Residence, Age, Date
of Birth (DOB), Name, andSocial Security Number (SSN)
as the dimension types. The intuition is thateverythingthat
characterizes the fact type isdimensional, even attributes that
would be considered asmeasuresin other models.

A dimension typeT is a four-tuple(C;�T ;>T ;?T),
whereC = fCj ; j = 1; ::; kg are thecategory typesof T ,
�T is a partial order on theCj ’s, with >T 2 C and?T 2 C

being the top and bottom element of the ordering, respec-
tively. Thus, the category types form a lattice. The intuition
is that one category type is “greater than” another category
type if members of the former’s extension logically contain
members of the latter’s extension, i.e., they have a larger ele-
ment size. The top element of the ordering corresponds to the
largest possible element size, that is, there is only one element
in its extension, logically containing all other elements.

We say thatCj is a category type ofT , writtenCj 2 T , if
Cj 2 C. We assume a functionPred : C 7! 2C that gives the
set of immediate predecessors of a category typeCj .
Example 2 Low-level diagnoses are contained in diagnosis
families, which are contained in diagnosis groups. Thus, the
Diagnosisdimension type has the following order on its cat-
egory types:?Diagnosis = Low-level Diagnosis< Diagno-
sis Familiy< Diagnosis Group< >Diagnosis. We have that
Pred(Low-level Diagnosis) = fDiagnosis Familyg. Other
examples of category types areAgeandTen-year Age Group
from the Age dimension type, andDOB andYear from the
DOB dimension type. Figure 2, to be discussed in detail later,
illustrates the dimension types of the case study.

Many types of data, e.g., ages or sales amounts, can be
added together to produce meaningful results. This data has
an ordering on it, so computing the average, minimum, and
maximum values make sense. For other types of data, e.g.,
dates of birth or inventory levels, the user may not find it
meaningful in the given context to add them together. How-
ever, the data has an ordering on it, so taking the average, or
computing the maximum or minimum values do make sense.
Some types of data, e.g., diagnoses, do not have an ordering
on them, and so it does not make sense to compute the aver-
age, etc. Instead, the only meaningful aggregation is to count
the number of occurrences.

We can support correct aggregation of data by keeping
track of what types of aggregate functions can be applied to
what data. This information can then be used to either pre-
vent users from doing “illegal” calculations on the data com-
pletely, or to warn the users that the result might be “wrong,”
e.g., the same patient is counted twice, etc. In line with this
reasoning and previous work [11, 17], we distinguish be-
tween three types of aggregate functions:�, applicable to
data that can be added together,�, applicable to data that can
be used for average calculations, andc, applicable to data
that is constant, i.e., it can only be counted. Considering
only the standard SQL aggregation functions, we have that
� = fSUM, COUNT, AVG, MIN, MAXg, � = fCOUNT,
AVG, MIN, MAX g, andc = fCOUNTg. The aggregation
types are ordered,c � � � �, so data with a higher aggrega-
tion type, e.g.,�, also possess the characteristics of the lower
aggregation types. For each dimension typeT = (C;�T),
we assume a functionAggtypeT : C 7! f�; �; cg that gives
the aggregation type for each category type.

Example 3 In the case study, we haveAggtype(Low-level
Diagnosis) = c, Aggtype(Age) =�, andAggtype(DOB) =�.

A dimensionD of type T = (fCjg;�T ;>T ;?T) is a
two-tupleD = (C;�), whereC = fCjg is a set ofcate-
goriesCj such thatType(Cj) = Cj and� is a partial order
on[jCj , the union of all dimension values in the individual
categories. A categoryCj of type Cj is a set ofdimension
valuese such thatType(e) = Cj . The definition of the partial
order is: given two valuese1; e2 thene1 � e2 if e1 is logically
contained ine2. We say thatCj is a category ofD, written
Cj 2 D, if Cj 2 C. For a dimension valuee, we say that
e is a dimensional value ofD, written e 2 D, if e 2 [jCj .
The category type?T in dimension typeT contains the val-
ues with the smallest value size. The category type with the
largest value size,>T , contains exactly one value, denoted
>. For all valuese of the category types ofD, e � >. Value
> is similar to theALL construct of Gray et al. [2].

Example 4 In ourDiagnosisdimension we have the follow-
ing categories, named by their type.Low-level Diagnosis
= f3; 5; 6g, Diagnosis Family= f4; 7; 8; 9; 10g, Diagnosis
Group = f11; 12g, and>Diagnosis = f>g. The values in
the sets refer to theID column in the Diagnosis table of Ta-
ble 1. The partial order� is given by the first two columns in
the Grouping table in Table 1. Additionally, the top value>
logically contains all the other diagnosis values.

We say that the dimensionD0 = (C 0;�0) is a subdi-
mensionof the dimensionD = (C;�) if C 0 � C and
e1 �0 e2 , 9C1; C2 2 C 0(e1 2 C1 ^ e2 2 C2 ^ e1 � e2),
that is,D0 has a subset of the categories ofD and�0 is the
restriction of� to these categories.

Example 5 We obtain a subdimension of the Diagnosis di-
mension from the previous example by removing theLow-
level Diagnosisand Diagnosis Familycategories, retaining
only Diagnosis Groupand>Diagnosis .

It is desirable to distinguish between the dimension val-
ues in themselves and the real-world “names” that we use
for them. The names might change or the same value might
have more than one name, making the name a bad choice
for identifying an value. In common database terms, this is
the argument forobject idsor surrogates. To support this
feature, we require that a categoryC has one or morerep-
resentations. A representationRep is a bijective function
Rep : Dom(C) $ DomRep, i.e., a value of a representa-
tion uniquely identifies a single value of a category and vice
versa, thus making the representation an “alternate key.” We
use the notationRep(e) = v to denote the mapping from
dimension values to representation values.

Example 6 A diagnosis value has two representations,Code
andText. Using the ID’s from the Diagnosis table to identify
the values, we haveCode(3) = “O24” andText(3) = “Diabetes
during pregnancy.”

Let F be a set of facts andD = (fCjg;�) a dimension.
A fact-dimension relationbetweenF andD is a setR =
f(f; e)g, wheref 2 F ande 2 [jCj . ThusR links facts
to dimension values. We say that factf is characterized by
dimension valuee, written f ; e, if 9e1 2 D ((f; e1) 2
R ^ e1 � e). We require that8f 2 F (9e 2 [jCj ((f; e) 2
R)); thus we do not allow missing values. The reasons for
disallowing missing values are that they complicate the model
and often have an unclear meaning. If it is unknown which
dimension value a factf is characterized by, we add the pair
(f;>) to R, thus indicating that we cannot characterizef

within the particular dimension.

Example 7 The fact-dimension relationR links patient facts
to diagnosis dimension values as given by the Has table in Ta-
ble 1. Leaving out the temporal aspects for now, we get that
R = f(1,9), (2,3), (2,5), (2,8), (2,9)g. Note that we can relate
facts to values in higher-level categories, e.g., fact 1 is related
to diagnosis 9, which belongs to theDiagnosis Familycate-
gory. Thus, we do not require thate belongs to?Diagnosis ,
as do the existing data models. If no diagnosis is known for
patient 1, we would have added the pair(1;>) toR.

A multidimensional object(MO) is a four-tupleM =
(S; F;D;R), whereS = (F ;D = fTig) is the schema,F =
ffg is a set offactsf whereType(f) = F , D = fDi; i =
1; ::; ng is a set ofdimensionswhereType(Di) = Ti, and
R = fRi; i = 1; ::; ng is a set of fact-dimension relations,
such that8i((f; e) 2 Ri) f 2 F ^ 9Cj 2 Di(e 2 Cj)).

Day =

Week Month

Quarter

Year
⊥

⊥LL Diagnosis = ⊥

Diagnosis
Family

Diagnosis
Group

⊥

Diagnosis Date of Birth Residence

Area = ⊥

County

Region

⊥

Patient

Decade

Name = ⊥

⊥

Name SSN

⊥

SSN = ⊥Age = ⊥

Five year
group

Ten year
group

⊥

Age

Figure 2. Schema of the Case Study

Example 8 For the case study, we get a six-dimensional MO
M = (S; F;D;R), whereS = (Patient, fDiagnosis, DOB,
Residence, Name, SSN, Ageg) andF = f1; 2g. The defini-
tion of the diagnosis dimension and its corresponding fact-
dimension relation were given in the previous examples. Due
to space constraints, we do not list the contents of the other di-
mensions and fact-dimension relations, but just outline their
structure. The Name and SSN dimensions are simple, i.e.,
they just have a? category type, Name respectively SSN, and
a> category type. The Age dimension groups ages (in years)

into five-year and ten-year groups, e.g., 10–14 and 10–19.
The Date-of-Birth dimension has two hierarchies in it: days
are grouped into weeks, or days are grouped into months,
with the further levels of quarters, years, and decades. We
will refer to this MO as the “Patient” MO. A graphical illus-
tration of the schema of the “Patient” MO is seen in Figure 2.

A collection of multidimensional objects, possibly with
shared subdimensions, is called amultidimensional object
family. The shared subdimensions can be used to “join” data
from separate MO’s.

To summarize our model, the facts are objects with asep-
arate identity. Thus, we can test facts for equality, but we
do not assume an ordering on the facts. The combination of
dimensions values that characterize the facts of a fact set is
not a “key” for the fact set. Thus, we may have “duplicate
values,” in the sense that several facts may be characterized
by the same combination of dimension values. But, the facts
of an MO are aset, so we do not have duplicatefacts in an
MO.

3.2 Handling Time
We proceed to build temporal support into the model.

Consistently with the vast majority of temporal data mod-
els [14] and the SQL standard [15], we assume a time domain
that is discrete and bounded, i.e., isomorphic with a bounded
subset of the natural numbers. The values of the time domain
are calledchronons. They correspond to the finest granular-
ity in the time domain [19]. We letT , possibly subscripted,
denote a set of chronons.

The valid timeof a statement is the time when the state-
ment is true in the modeled reality [1]. Valid time is very im-
portant to capture because the real world is where the users re-
side, and weallow the attachment of valid time to the data, but
do not require it. If valid time is not attached to the data, we
assume the data to bealwaysvalid. If valid time is attached to
an MO, we call it avalid-timeMO. In general, valid time may
be assigned to anything that has a truth value. In our model,
this is the partial order between dimension values, the map-
ping between values and representations, the fact-dimension
relations, and the membership of values in categories. It is
important to be able to capture all these aspects.

We add valid time to the dimension partial order� by
addingTv, the set of chronons during which the relation
holds, to each relation between two values. We write that
e1 �Tv e2 if e1 � e2 during each chronon inTv. The partial
order�Tv has the following property:e1 �T1v e2^ e2 �T2v
e3) e1 �T1v\T2v e3. Similarly, we writeRep(e) =Tv v

to denote that the representationRep of the valuee has value
v during each chronon inTv. For each fact-dimension rela-
tion between a factf and a dimension valuee, we capture
the set of chrononsTv when the two are related. We write
(f; e) 2Tv R when(f; e) 2 R during each chronon inTv.
We use the notationf ;Tv e when(f; e0) 2Tv R^e0 �Tv e.

Finally, we add valid time to the membership of dimension
values in categories, writinge 2Tv C whene 2 C during
each chronon inTv.

The set of chronons that is attached to a piece of data is
the maximalset of chronons when the data is valid, so the
data is always “coalesced” [1]. Thus, we do not have the
problem of “value-equivalent” data [1, 18], where the same
data appears several times with different times attached to it,
e.g.,e1 �T1 e2 ande1 �T2 e2, whereT1 6= T2. However, by
implication, data is valid for any subset of its attached time,
e.g.,T1 � T2 ^ e1 �T2 e2) e1 �T1 e2.

Example 9 In examples, we use interval notation forTv,
with a chronon size of Day. For the fact-dimension rela-
tion, we have(2; 3) 2[23=03=75�24=12=75] R. For the cate-
gory membership, we have10 2[01=01=80�NOW] Diagnosis
Family. For the partial order on the Diagnosis dimension, we
have7 �[01=01=70�31=12=79] 3. For the representation, we
haveCode(8) =[01=01=70�31=12=79] D1.

To sum up, by extending the dimension partial order with
links between dimension values that represent the “same”
thing across change, we have a foundation for handling anal-
ysis across changes. This allows us to obtain meaningful re-
sults when we analyze data across changes in a dimension.

Example 10 When looking at the data from the current point
in time, we want to count the patients diagnosed with the old
“Diabetes” diagnosis(ID = 8) together with those diagnoses
with the new “Diabetes” diagnosis(ID = 11) when we look
at diagnoses made from 1970 to the present. This is done
by defining that8 �[01=01=80�NOW] 11, i.e., from 1980 up
till now, we consider diagnosis 8 to be logically contained in
diagnosis 11.

In addition to valid time, it is also interesting to capture
when statements are present in the database, as the time a
statement is present in the database almost never corresponds
to the time it is true in the real world. We need to know when
data are present in the database for accountability and trace-
ability purposes.

The transaction timeof a statement is the time when the
statement is current in the database and may be retrieved [1].
Generally, transaction time can be attached to anything that
valid time can be attached to. The addition of transaction
time is orthogonal to the addition of valid time. Additionally,
transaction time can be added to data that does not have a
truth value. In our model, we could record when facts, e.g.,
patients, are present in the database. We do not think that this
is very interesting in itself, as facts are only interesting when
they participate in fact-dimension relations. Thus, we do not
record this. If transaction time is attached to an MO, we call
it a transaction-timeMO. If both valid and transaction time is
attached to an MO, we call it abitemporalMO. If no time is
attached to an MO, we call it asnapshotMO. In our notation,

we useTt to denote the set of chronons when data is current
in the database. We useTt � Tv to denote sets of bitemporal
chronons.

3.3 Handling Uncertainty

Uncertainty in the data can also be handled in the model.
The basic idea is to add probabilitiesp to the parts of the
model where it makes sense. This is for the partial order on
dimension values and for the fact-dimension relations, with
the notationse1 �p e2 and(f; e) 2p Ri, respectively. The
probabilities are also handled by the algebra. Due to space
constraints, we will not give a detailed description of the ap-
proach here, but refer to the full paper [21].

3.4 Properties of the Model

The model has several important properties that relate to
the use of pre-computed aggregates. The first important con-
cept issummarizability, which intuitively means that one set
of aggregate results can be combined directly to produce
other, higher-level aggregate results.

Definition 1 Given a typeT , a setS = fSj ; j = 1; ::; kg,
whereSj 2 2T , and an aggregate functiong : 2T 7! T , we
say thatg is summarizablefor S if g(fg(S1); ::; g(Sk)g) =
g(S1 [:: [Sk). The set of arguments on the left side of the
equation is a multi-set, or bag, i.e., the same result value can
occur multiple times.

Summarizability is an important concept as it is a condi-
tion for the flexible use of pre-computed aggregates. With-
out summarizability, lower-level results generally cannot be
directly combined into higher-level results. This means that
we cannot choose to pre-compute only a relevant selection of
the possible aggregates and then use these to compute higher-
level aggregates on-the-fly. Instead, we have to pre-compute
the total results for all the aggregations that we need fast an-
swers to, while other aggregates must be computed from the
base data. It has been shown that summarizability is equiv-
alent to the aggregation function beingdistributive, all paths
beingstrict, and the hierarchies beingpartitioning in the rel-
evant dimensions [7]. If data with time attached to it is aggre-
gated such that data for one fact is only counted for one point
in time, this result extends to hierarchies that aresnapshot
strict andsnapshot partitioning. These concepts are formally
defined below. In the definitions, we assume a dimension
D = (C;�).

Definition 2 If 8C1; C2 2 C(e1; e3 2 C1 ^ e2 2 C2 ^ e2 �
e1 ^ e2 � e3) e1 = e3) then the mapping betweenC1

andC2 is strict. Otherwise, it isnon-strict. The hierarchy in
dimensionD isstrict if all mappings in it are strict; otherwise,
it is non-strict. Given a categoryCj 2 Di, we say that there
is astrict pathfrom the set of factsF toCj iff 8f 2 F (f ;

e1 ^ f ; e2 ^ e1 2 Cj ^ e2 2 Cj) e1 = e2)
1. The

hierarchy in dimensionD is snapshot strict, if at any given
time t, the hierarchy is strict.

Definition 3 If 8C1 2 C(C1 6= >D ^ e1 2 C1) 9C2 2
Pred(C1)(9e2 2 C2(e1 < e2))), i.e., if every non-top value
has a direct parent, we say that the hierarchy in dimensionD

is partitioning; otherwise, it isnon-partitioning. The hierar-
chy in dimensionD is snapshot partitioningif at any given
time t, the hierarchy is partitioning.

Example 11 The hierarchy in the Residence dimension is
strict and partitioning. The hierarchy in the Diagnosis di-
mension is non-strict and partitioning, but could have been
non-partitioning. The sub-hierarchy of the Diagnosis dimen-
sion obtained by restriction to the standard classification is
snapshot strict and snapshot partitioning.

4 The Algebra
This section defines an algebra on the multidimensional

objects just defined. In line with the model definition, we
first define the basic algebra and then define the extension for
handling time. The extension to uncertainty is described in
the full paper [21].

4.1 Fundamental Operators
The fundamental operators are close to the standard rela-

tional algebra operators. For unary resp. binary operators,
we assume a multidimensional objectM = (S; F;D =
fDig; R = fRig); i = 1; ::; n with schemaS = (F ;D)
and multidimensional objectsMk = (Sk; Fk; Dk =
fDkikg; Rk = fRkik

g); k = 1; 2. The representations of
the categories in the resulting MO’s are the same as in the ar-
gument MO’s; thus we do not specify the representations for
the resulting MO’s. The aggregation types are only changed
by the aggregate formation operator, so they are not specified
for the other operators.

For the operator definitions, we need some auxilary func-
tions. First, we defineGroup that groups the facts charac-
terized by the same dimension values together. Given an n-
dimensional MO,M = (S; F;D = fDig; R = fRig); i =
1; ::; n, a set of categoriesC = fCi j Ci 2 Dig; i = 1; ::; n,
one from each of the dimensions ofM , and an n-tuple
(e1; ::; en), whereei 2 Ci; i = 1; ::; n, we defineGroup as:
Group(e1; ::; en) = ff j f 2 F ^ f ;1 e1 ^ ::^ f ;n eng.

Next, we define aunion operator on dimensions, which
performs union on the categories and the partial orders. Given
two dimensionsD1 = (C1;�1) andD2 = (C2;�2) of type
T , whereCk = fCkjg; k = 1; 2; j = 1; ::;m, we define the
union operator on dimensions,

S
D , as: D1

S
DD2 = (C 0;

�0), whereC 0 = fC 0
jg; j = 1; ::;m, C 0

j = C1j [C2j , where
[denotes set union, ande1 �0 e2 , e1 �1 e2 _ e1 �2 e2.

1Note that the paths from the set of factsF to the>T categories are
always strict.

selection: Given a predicatep on the dimension types
D = fTig, we define the selection� as: �[p](M) =
(S 0; F 0; D0; R0), whereS 0 = S, F 0 = ff 2 F j 9e1 2
D1; ::; en 2 Dn (p(e1; ::; en) ^ f ;1 e1 ^ :: ^ f ;n en)g,
D0 = D, R0 = fR0

ig, andR0
i = f(f 0; e) 2 Ri j f 0 2 F 0g.

Thus, we restrict the set of facts to those that are character-
ized by values wherep evaluates to true. The fact-dimension
relations are restricted accordingly, while the dimensions and
the schema stay the same.

projection: Without loss of generality, we assume that the
projection is over thek dimensionsD1; ::; Dk. We then de-
fine projection� as: �[D1; ::; Dk](M) = (S 0; F 0; D0; R0),
whereS 0 = (F 0;D0); F 0 = F ; D0 = fT1; ::; Tkg; F 0 =
F; D0 = fD1; ::; Dkg, andR0 = fR1; ::; Rkg. Thus, we
retain only thek specified dimensions, but the set of facts
stays the same. Note that we do not remove “duplicate val-
ues.” Thus the same combination of dimension values may
be associated with several facts.

rename: Given an MO,M = (S; F;D;R), and fact
schemaS 0 = (F 0;D0), such thatD is isomorphic withD0,
we define the rename� as: �[S 0](M) = M 0, whereM 0 =
(S 0; F;D;R). We see that rename just return the contents
of M with the new schemaS 0, which has the same structure
as the old schemaS. Rename is used to alter the names of
dimensions so that dimensions with the same name, e.g., re-
sulting from a “self-join,” can be distinguished.

union: Given two n-dimensional MO’s,Mk = (Sk ; Fk;
Dk; Rk); k = 1; 2, such thatS1 = S2, we define the union

S

as: M1

S
M2 = (S 0; F 0; D0; R0), whereS 0 = S1; F

0 =
F1 [F2; D0 = fD1i

S
DD2i ; i = 1; ::; ng; and R0 =

fR1i [R2i ; i = 1; ::; ng. In words, given two MO’s with
common schemas, we take the set union of the facts and the
fact-dimension relations. The

S
D operator is used to com-

bine the dimensions.

difference: Given two n-dimensional MO’s,Mk =
(Sk; Fk; Dk; Rk); k = 1; 2, such thatS1 = S2, we define
the differencen as: M1 n M2 = (S 0; F 0; D0; R0), where
S 0 = S1; F

0 = F1 n F2; D
0 = D1, R0 = fR0

i; i = 1; ::; ng,
with R0

i = f(f 0; e) j f 0 2 F 0 ^ (f 0; e) 2 R1i . Thus, given
two MO’s with common schemas, we take the set difference
of the facts, the dimensions of the first argument MO are re-
tained, and the fact-dimension relations are restricted to the
new fact set. Note that we do not take the set difference of
the dimensions, as this does not make sense.

identity-based join: Given two MO’s,M1 andM2, and a
predicatep(f1; f2) 2 ff1 = f2; f1 6= f2; trueg, we define
the identity-based join1 as:M1 1[p] M2 = (S 0; F 0; D0; R0),
where(S 0 = (F 0;D0), F 0 = F1 � F2, D0 = D1 [D2,
F 0 = f(f1; f2) j f1 2 F1^ f2 2 F2^ p(f1; f2)g,D0 = D1[
D2, R0 = fR0

i; i = 1; ::; n1 + n2g, andR0
i = f(f 0; e)jf 0 =

(f1; f2) ^ f 0 2 F 0 ^ ((i � n1 ^ (f1; e) 2 R1i) _ (i >

n1 ^ (f2; e) 2 R2i�n1
))g. The1 operator is used to combine

information from several MO’s. It works as follows. The
new fact type is the type ofpairs of the old fact types, and
the new set of dimension types is the union of the old sets.
The set of facts is the subset of the cross product of the old
sets of facts where the join predicatep holds. Forp equal to
f1 = f2, f1 6= f2, andtrue, the operation is anequi-join,
non-equi-join, andCartesian product, respectively. For the
instance, the set of dimensions is the set union of the old sets
of dimensions, and the fact-dimension relations relate a pair
to a value if one member of the pair was related to that value
before.

aggregate formation: The aggregate formation operator is
used to compute aggregate functions on the MO’s. For nota-
tional convenience and following Klug [16], we assume the
existence of afamily of aggregation functionsg that take
somek-dimensional subsetfDi1 ; ::; Dikg of the n dimen-
sions as arguments, e.g.,SUM i sums thei’th dimension and
SUM ij sums thei’th and j’th dimensions. We assume a
functionArgs(g) = fj j g uses dimensionj as argumentg
that returns the argument dimensions ofg.

Given an n-dimensional MO,M , a dimensionDn+1

with type Tn+1, a function2, g : 2F 7! Dn+1 such
that g 2 minj2Args(g)(Aggtype(?Dij

)), and a set of cat-
egoriesCi 2 Di; i = 1; ::; n, we define aggregate forma-
tion operator� as: �[Dn+1; g; C1; ::; Cn](M) = (S 0; F 0;

D0; R0), whereS 0 = (F 0;D0), F 0 = 2F , D0 = fT 0
i ;

i = 1; ::; ng [fTn+1g, T 0
i = (C0i;�0

Ti
;?0

Ti
;>0

Ti
), C0i =

fCij 2 Ti j Type(Ci) �Ti Cijg, �0
Ti

= �TijC0
i

, ?0
Ti

=

Type(Ci), >0
Ti

= >Ti , F
0 = fGroup(e1; ::; en) j (e1; :

:; en) 2 C1 � :: � Cn ^ Group(e1; ::; en) 6= ;g,
D0 = fD0

i; i = 1; ::; ng [fDn+1g, D0
i = (C 0

i ;�0
i),

C 0
i = fC 0

ij 2 Di j Type(C 0
ij) 2 C0ig, �0

i = �ijD0

i

,

R0 = fR0
i; i = 1; ::; ng [fR0

n+1g, R0
i = f(f 0; e0i) j

9(e1; ::; en) 2 C1 � :: � Cn (f 0 = Group(e1; ::; en) ^
f 0 2 F 0 ^ ei = e0i)g, andR0

n+1 = [(e1;::;en)2C1�::�Cn
f(Group(e1; ::; en); g(Group(e1; ::; en))) j Group(e1; ::;
en) 6= ;g. The aggregation types for the remaining parts
of the argument dimensions are not changed. The aggre-
gation types for the result dimension is given by the fol-
lowing rule. If g is distributive, the paths toC1; ::; Cn are
strict, and the hierarchies up toC1; ::; Cn are partitioning,
then Aggtype(?Dn+1

) = minj2Args(g)(Aggtype(?Dj
)).

Otherwise, Aggtype(?Dn+1
) = c. For the higher

categories in the result dimension,Aggtype(C 0
m) =

min(fAggtype(Cm);Aggtype(?Dn+1
)g).

Thus, for every combination(e1; ::; en) of dimension val-
ues in the given “grouping” categories, we applyg to the set
of factsffg, where thef ’s are characterized by(e1; ::; en),
and place the result in the new dimensionDn+1. The facts
are of typesetsof the argument fact type, and the argument

2The functiong “looks up” the required data for the facts in the relevant
fact-dimension relations, e.g.,SUM i finds its data in the relationRi.

dimension types are restricted to the category types that are
greater than or equal to the types of the given “grouping” cat-
egories. The dimension type for the result is added to the set
of dimension types. The new set of facts consists of sets of
facts, where the facts in a set share a combination of char-
acterizing dimension values. The argument dimensions are
restricted to the remaining category types, and the result di-
mension is added.

The fact-dimension relations for the argument dimensions
now link sets of facts directly to their corresponding combi-
nation of dimension values, and the fact-dimension relation
for the result dimension links sets of facts to the function re-
sults for these sets. If the functiong is distributive, the paths
up to the grouping categories are strict, and the hierarchy up
to the grouping categories is partitioning, i.e.,g is “summa-
rizable,” then the aggregation type for the bottom category in
the result dimension is the minimum of the aggregation types
for the bottom categories in the dimensions thatg uses as ar-
guments; otherwise, the aggregation type isc. For the higher
categories, the minimum of the aggregation types given in the
result dimension and the bottom category’s aggregation type
is used. Thus, aggregate results that are “unsafe” in the sense
that they contain overlapping data cannot be used for further
aggregation. This prevents the user from getting incorrect re-
sults by accidentally “double-counting” data.

{1,2}{2}

12 11
⊥

Diagnosis
dimension

Result
 dimension

⊥
1 20

...

0-1 >1

Set-of-Patient

Diagnosis
Group Count

Range

Figure 3. Result MO for Aggregate Formation

Example 12 We want to know the number of patients in each
diagnosis group. To do so, we apply the aggregate-formation
operator to the “Patient” MO with theDiagnosis Groupcat-
egory and the> categories from the other dimensions. The
aggregate functiong to be used isset-count, which counts the
number of members in a set. The resulting MO has seven di-
mensions, but only the Diagnosis and Result dimensions are
non-trivial, i.e., the remaining five dimensions contain only
the> categories. The set of facts is stillF = f1; 2g. The
Diagnosis dimension is cut so that only the part fromDiag-
nosis Groupand up is kept. The result dimension groups the
counts into two ranges: “0–1” and “>1”. The fact-dimension
relation for the Diagnosis dimension links the sets of patients

to their corresponding Diagnosis Groups. The content is:
R1 = f(f1; 2g; 11); (f2g; 12)g, meaning that the sets of pa-
tientsf1; 2g andf2g are characterized by diagnosis groups
11 and12, respectively. The fact-dimension relation for the
result dimension relates each group of patients to the count
for the group. The content is:R7 = f(f1; 2g; 2); (f2g; 1)g,
meaning that the results ofg on the setsf1; 2g andf2g are2
and1, respectively. A graphical illustration of the MO, leav-
ing out the trivial dimensions for simplicity, is seen in Fig-
ure 3. Note that each patient is only counted once for each
diagnosis group, even though patient2 hasseveraldiagnoses
in each group.

Other common OLAP and relational operators, such as
value-based join, duplicate removal, SQL-like aggregation,
star-join, drill-down, and roll-up can easily be defined in
terms of the fundamental operators [21]. The algebra satis-
fies the following two properties [21].

Theorem 1 The algebra is closed.

Theorem 2 The algebra is at least as powerful as Klug’s
[16] relational algebra with aggregation functions .

4.2 Handling Time in the Algebra
It is a requirement to be able to view data as it appeared

at a given point in time, in the database or in the real world,
and to do analysis related to time, including analysis across
times of change in the data. We note that the operators do not
introduce any “value-equivalent tuples”; thus the data stays
coalesced. First, we consider valid-time MO’s. To be able to
view data as they appeared at any given point in time in the
real world, we introduce thevalid-timeslice operator[1].

valid-timeslice operator: Given a chronont and an MO,
M = (S; F;D;R), we define the valid-timeslice operator�v
as: �v(M; t) = (S 0; F 0; D0; R0), whereS 0 = S, F 0 = F ,
D0 = fD0

ig; i = 1; ::; n, D0
i = (C 0

i ;�0
i), C

0
i = fe j e 2T

Ci ^ t 2 Tg, e1 �0
i e2 , (e1 �iT e2 ^ t 2 T), R0 =

fR0
ig; i = 1; ::; n, andR0

i = f(f; e) j (f; e) 2T Ri ^ t 2 Tg.
For a representationRep of a category typeCj , we have that
Rep(e) = v , (Rep(e) =T V ^ t 2 T). Thus, the valid-
timeslice operator returns the parts of the MO that are valid
at timet, with no valid time attached, i.e., the valid-timeslice
operator changes the temporal type of the MO from valid-
time or bitemporal to snapshot or transaction-time, respec-
tively.

To support analysis related to time, we allow predicatesp

and functionsg to be used in selections and aggregate forma-
tions that refer to time. We will not go deeper into the struc-
ture of temporal predicates and functions; for a full treatment,
see, e.g., the TSQL2 language [18].

The last step is to define how the basic algebra operations
deal with the time attached to MO’s. Neither the selection
operator, the projection operator, nor the rename operator

change the time attached to the resulting MO’s. For the union
operator, time attachments for the resulting MO are computed
using to the following rules3. (f; e) 2T1 R1i ^ (f; e) 2T2

R2i) (f; e) 2T1[T2 R0
i, e1 �1T1

e2 ^ e1 �2T2
e2)

e1 �0
T1[T2

e2, Rep1(e) =T1 v ^ Rep2(e) =T2 v)
Rep0(e) =T1[T2 v, e 21T1 Cj ^ e 22T2 Cj) e 20T1[T2 Cj .
Thus, we simply take the union of the chronon sets for data
that occur in both MO’s; otherwise, we just use the original
time. For the difference operator, the following rules apply.
(f; e) 2T1 Ri1^(f; e) 2T2 Ri2^T1nT2 6= ;) (f; e) 2T1nT2

R0
i, F

0 =
T

i=1;::;nff j 9(f; ei) 2 R0
i ((f; ei) 2T 0 R0

i ^T 0 6=
;)g. Thus, the time for a pair in a fact-dimension relation
for the first MO is cut by the time that the corresponding pair
has in the fact-dimension relation for the second MO. Only
pairs with non-empty chronon sets are retained. The facts in
the resulting MO are those that participate in all the resulting
fact-dimension relations during a non-empty set of chronons.
As in the non-temporal case, we do not alter the dimensions
of the first MO.

The identity-based join operator does not change the time
attached to the dimensions of the resulting MO. For the fact-
dimension relations, the following rule is used.(fk; ek) 2Tk

Rki ; k = 1; 2 ^ p(f1; f2)) ((f1; f2); ek) 2Tk R0
i+(k�1)n1

.
Thus the pair(f1; f2) inherits its time attachment from the
fact-dimension relation of the relevant argument MO, i.e,
((f1; f2); e) 2T R0

i getsT from (f1; e) 2T R1i if i � n1
and from(f2; e) 2T R2i if i > n1.

The aggregate formation operator does not change the
time attached to the remaining parts of the argument di-
mensions or to the result dimension. The time attached to
the fact-dimension relations between the facts and the ar-
gument dimensions is given by the following rule. Given
a tuple of dimension values(e1; ::; en) from the grouping
categories,(Group(e1; ::; en); ei) 2T 0

i
R0

i, where T 0
i =

\f2Group(e1;::;en)ftf j f ;tf eig. Thus, the time at-
tached to the fact-dimension relation between a set of facts
and a dimension value is the intersection of the time attached
to the relations between the individual facts and the dimen-
sion value. The fact-dimension relation for the result di-
mension is given by the following rule. Given a tuple of
dimension values(e1; ::; en) from the grouping categories,
(Group(e1; ::; en); g(Group(e1; ::; en)) 2T 0

n+1
R0

n+1, where
T 0
n+1 =

T
f2Group(e1;::;en);i2Args(g)

ftfi j f ;tfi
eig.

Thus, the time attached to the fact-dimension relation be-
tween a set of facts and the result ofg on that set is the in-
tersection of the time attached to the relations between the
individual facts and the dimension values for the dimensions
thatg uses as arguments.

For transaction time support, we can define thetransac-
tion-timeslice operator, �t, in the same way as the valid-
timeslice operator. Given a transaction-time or bitemporal

3SubscriptT1 denotes time for the first argument MO, andT2 for the
second.

MO, this operator returns a snapshot or valid-time MO, re-
spectively. The operators in the algebra support transaction
time in the same way as valid time.

5 Conclusion and Future Work
Motivated by the popularity of On-Line Analytical Pro-

cessing (OLAP) systems for analyzing business data, multi-
dimensional data models have become a major database re-
search area. However, current models do not handle well the
complex data found in some real-world applications.

We present a real-world case study from the clinical world
and use it to justify nine requirements that a multidimensional
data model must satisfy in order to support the complex data
found in real-world applications. Eight previously proposed
data models are evaluated according to the requirements. Re-
quirements not handled by these models include many-to-
many relationships between facts and dimensions, handling
change and time, handling uncertainty, and handling differ-
ent levels of granularity.

We propose a new, extended multidimensional data model,
which addresses all nine requirements. Non-strict hierarchies
are supported by the partial order on dimension values, while
many-to-many relationships between facts and dimensions
and handling different levels of granularity is supported by
the fact-dimension relations. Additionally, time is handled
by adding valid time and transaction time to the basic model,
while uncertainty is handled by adding probabilities to the
basic model. Advanced features of current models are also
supportted. Explicit and multiple hierarchies in dimensions
are supported by the lattice structure of the dimension types,
and the approach of treating all data as dimensional while still
allowing computation allows for symmetrical treatment of di-
mensions and measures. The aggregation type mechanism
helps the user to ensure that data is correctly aggregated. We
propose an algebra on the objects from the model and show
that it is closed and at least as strong as relational algebra with
aggregation functions. The algebra is extended to handle time
and probabilities.

In future work, it should be investigated how the model
can be efficiently implemented using special-purpose algo-
rithms and data structures. It is also interesting to investigate
if the lattice structures of the schema can be used directly in
the user interface of an OLAP tool based on the model. Next,
a notion of completeness for multidimensional algebras, sim-
ilar to Codd’s relational completeness would be an exciting
research topic. Finally, we believe that it is important to in-
vestigate how multidimensional models may cope with the
hundreds of dimensions found in some applications.

Acknowledgements

This research was supported in part by the Danish Techni-
cal Research Council through grant 9700780, by the Danish

Academy of Technical Sciences, contract no. EF661, and by
a grant from the Nykredit corporation.

References

[1] C. S. Jensen and C. E. Dyreson, (editors). A Consensus Glos-
sary of Temporal Database Concepts—February 1998 Ver-
sion. In [14], pp. 367–405.

[2] J. Gray et al. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab and Sub-Totals. InProc.
of ICDE, pp. 152–159, 1996.

[3] R. Kimball. The Data Warehouse Toolkit. Wiley, 1996.

[4] E. F. Codd. Providing OLAP to user-analysts: An IT mandate.
E.F. Codd and Associates, 1993.

[5] R. Agrawal et al. Modeling Multidimensional Databases. In
Proc. of ICDE, pp. 232–243, 1997.

[6] M. Rafanelli and A. Shoshani. STORM: A Statistical Object
Representation Model. InProc. of SSDBM, pp. 14–29, 1990.

[7] H. Lenz and A. Shoshani. Summarizability in OLAP and Sta-
tistical Databases. InProc. of SSDBM, pp. 39–48, 1997.

[8] A. Shoshani. OLAP and Statistical Databases: Similarities
and Differences. InProc. of PODS, pp. 185–196, 1997.

[9] M. Gyssens and L. V. S. Lakshmanan. A Foundation for
Multi-Dimensional Databases. InProc. of VLDB, pp. 106–
115, 1997.

[10] C. Li and X. S. Wang. A Data Model for Supporting On-Line
Analytical Processing. InProc. of CIKM, pp. 81–88, 1996.

[11] W. Lehner. Modeling Large Scale OLAP Scenarios. InProc.
of EDBT, pp. 153–167, 1998.

[12] World Health Organization. International Classification of
Diseases (ICD-10). Tenth Revision, 1992.

[13] A. Datta and H. Thomas. A Conceptual Model and Alge-
bra for On-Line Analytical Processing in Decision Support
Databases. InProc. of WITS, pp. 91–100, 1997.

[14] O. Etzion, S. Jajodia, and S. Sripada (editors).Temporal
Databases: Research and Practice. LNCS 1399, Springer-
Verlag, 1998.

[15] J. Melton and A. R. Simon.Understanding the new SQL - A
Complete Guide.Morgan Kaufmann, 1993.

[16] A. Klug. Equivalence of Relational Algebra and Rela-
tional Calculus Query Languages Having Aggregate Func-
tions. Journal of the ACM, 29(3):699–717, 1982.

[17] M. Rafanelli and F. Ricci. Proposal of a Logical Model for
Statistical Databases. InProc. of SSDBM, pp. 264–272, 1983.

[18] R. T. Snodgrass et. al.The TSQL2 Temporal Query Language.
Kluwer Academic Publishers, 1995.

[19] C. Bettini et al. A Glossary of Time Granularity Concepts. In
[14], pp. 406–413.

[20] J. Clifford et al. On the Semantics of “Now” in Databases.
ACM TODS, 22(2):171–214, 1997.

[21] T. B. Pedersen and C. S. Jensen. Multidimensional
Data Modeling for Complex Data. TimeCenter TR-37,
<www.cs.auc.dk/TimeCenter>, 1998.

